## Kinematics Problems 2

## Example 1

A bullet that is shot vertically into the air has an initial velocity of $500 \mathrm{~m} / \mathrm{s}$. The acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ [down]. How long does it take before the bullet stops rising? How high does the bullet go?

## Example 2

A balloon is ascending at a rate of $9.0 \mathrm{~m} / \mathrm{s}$ and has reached a height of 80 m above the ground when it releases a package. How long does the package take to reach the ground?

## Kinematics Worksheet \#2

1. A Boeing 747 airliner, initially at rest, undergoes a constant acceleration of $2.3 \mathrm{~m} / \mathrm{s}^{2}$ down the runway for $34 s$ before it lifts off. How far does it travel down the runway before taking off? (1329.4 m)
2. You are driving your new Saturn Sport coupe at a velocity of $90 \mathrm{~km} / \mathrm{h}$, when you suddenly see a cat (meow) step into the road 50 m ahead. You hit the brakes hard to get a maximum deceleration of $7.5 \mathrm{~m} / \mathrm{s}^{2}$. How far will you go before stopping? Can you avoid hitting the cat? ( 41.7 m , yes)
3. A person throws a ball upward into the air with an initial velocity of $15 \mathrm{~m} / \mathrm{s}$. Calculate
a. how high the ball goes. ( 11.5 m )
b. how long the ball is in the air before it comes back to her hand. ( $3.06 s$ )
c. how much time it takes for the ball to reach its maximum height. ( 1.53 s )
d. the ball's velocity when it returns to the thrower's hand. $(-15 \mathrm{~m} / \mathrm{s})$
e. at what time the ball passes the $8 m$ height above the ground. ( 0.69 s or 2.37 s )
4. A baseball pitcher throws a fastball with a speed of $120 \mathrm{~km} / \mathrm{h}$. Estimate the average acceleration of the ball during the throwing motion. It is observed that in throwing the baseball, the pitcher accelerates the ball through a total distance of about 3.5 m from behind his body to the point where it is released. $\left(158.7 \mathrm{~m} / \mathrm{s}^{2}\right)$
5. A helicopter is ascending vertically with a speed of $6.0 \mathrm{~m} / \mathrm{s}$; at a height of 120 m above the earth, a package is dropped from a window. How much time does it take for the package to reach the ground? $(5.60 \mathrm{~s})$

Note $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, therefore, $10 g$ would be equivalent to $98 \mathrm{~m} / \mathrm{s}^{2}$.
6. A person who is properly constrained by a shoulder harness has a good chance of surviving a car collision if the deceleration does not exceed 30 g . Assuming uniform deceleration at this rate, calculate the distance over which the front end of the car must be designed to collapse if a crash occurs at $100 \mathrm{~km} / \mathrm{h} .(1.31 \mathrm{~m})$
7. Pelicans tuck their wings and free fall straight down when diving for fish. Suppose a pelican starts its dive from a height of 20 m and cannot change its path once committed. If it takes a fish $0.1 s$ to perform evasive action, at what minimum height must it spot the pelican to escape? Assume the fish is at the surface of the water. ( 1.93 m )
8. A helicopter descends at $5 \mathrm{~m} / \mathrm{s}$ and releases a bag. After 2 s ,
a. what is the bag's velocity? $(24.6 \mathrm{~m} / \mathrm{s})$
b. how far has the bag fallen? $(29.6 \mathrm{~m})$

